
1. Introduc9on 

1.1.  Examples, History, and Polymer Science at EPFL 

1.2.  DefiniJon and Basic ProperJes 

2. Single Chain Proper9es 

2.1.  The Ideal Polymer Chain 

2.2.  Real Polymer Chains 

3. Structures of Polymers in the Condensed State 

3.1.  The Cohesive Energy  

3.2.  The Amorphous State 

3.3.  The Crystalline State

4. Mechanical Proper9es 

4.1. ElasJc DeformaJon 

4.2. ViscoelasJcity 

4.3. Yield and Crazing 

5. Polymer Mixtures 

5.1.  Polymer Blends 

5.2.  Block Copolymers 

6. Polymer Technology 

6.1. Polymer Synthesis 

6.2. Major Polymer Classes 

6.3. Polymers as Materials 

6.4. Processing Techniques

Table of Contents

189



Mechanical Proper9es4



Elas9c Springs and Dashpots

191

• depending on magnitude, dura9on (temperature), and velocity of the deforma9on, polymers show 
a dominant elas9c behaviour or fluidic behaviour. They are viscoelas9c!

elas9c solids 
(reversible deformaJon)

viscoelas9c materials 
(a world in between)

viscous liquids 
(irreversible deformaJon)

• two borderline cases for materials deformaJon: elas9c solids vs. Newtonian liquids

σ = EϵHooke’s law:
Newton’s law:

see Chapter 5.2
ϵ = σ

η
.

ϵ F



Main Mechanical Deforma9ons and Representa9ve Curves
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tension compression shear torsion

• tension: a force that pulls materials apart, leading to elongaJon and stretching 
• compression: a force that pushes materials together, causing shortening and compacJng 
• shear: a force that causes layers of a material to slide past each other, resulJng in angular distorJon 
• torsion: a twisJng force applied to a material, resulJng in shear deformaJon along its length

• materials can deform in various ways under applied forces, each exhibiJng unique characterisJcs 



see Reading RecommendaJon (SJffness of Living Tissues)

Sta9c vs. Dynamic Measurements
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dynamic measurements 
(see Chapter 4.2)

sta9c measurements 
(see Chapters 4.1 and 4.3)

• sta9c measurements: material’s response under constant loads, highlighJng strength and elasJc limits 
• dynamic measurements: varying (oaen oscillatory) loads, providing insight into viscoelasJc behavior



Basic Mechanical Behavior of Polymers
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• Hooke’s law is oxen, for polymer materials in par9cular, only applicable at small strains

• polymers can be classified according to their stress-strain behaviour under tension

strain ε

str
es

s σ

thermoplast

fiber

elastomer

ϵ = Δl
l

E = σ
ϵ

analogy to Hooke’s law:

σ = force
unit area



Elas9c Moduli
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tension compression shear

• different elasJc moduli and compliances describing different stress situaJons:

Young’s modulus E bulk modulus shear modulusK G

tensile compliance D = 1
E

bulk compliance B = 1
K

shear compliance J = 1
G
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Small Deforma9on Behavior
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deforma9on in the glassy or semi-crystalline state: Jme-
independent response to stress like an elasJc solid

glassy state

transi9on zone

rubbery state

melt

M1 < M2 < M3

1

2

4

3

universal trend of Young’s modulus1

transi9on zone: retarded highly elasJc state at around Tg. 
Strongly Jme-dependent (viscoelasJcity) (see Chapter 4.2)2

rubber elas9city: large elasJc (reversible) deformaJons 
possible (see Chapter 4.1)

viscous state: liqle to no elasJc recovery, but viscous 
liquid behavior

3

4



5.1 
Elas9c Deforma9on



Energy Driven Elas9city
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• the elas9c force is of predominant enthalpic nature; entropy is a minor factor 
• steel is cooling upon stretching 
• the elas9c modulus decreases upon temperature increase

• typical for crystalline solids, i.e. steel wires can be reversibly stretched by up to 1%

Energy, U

distance
0 r0 r

r0

r
U = C(r − r0)2
parabolic nature of the potenJal near equilibrium point:

elasJc force:

stress:

f = ∂U
∂r

= 2C(r − r0)

Hooke’s law!

σ = f
A

= 2C
A

(r − r0) = 2Cr0
A

r − r0
r0

= Eϵ



Observa9ons on Elastomers Contradic9ng the Elas9city of Other Materials
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• rubbers and elastomers contract upon hea9ng (Gough-Joule effect, reported already in 1802) 
• the temperature of a rubber band increases upon rapid stretching 
• the elas9c modulus increases, when the temperature of the elastomer increases

original shape under stress axer stress

• elastomers and rubbers are capable of undergoing large deformaJons ( )ϵ > 100 %

L0
L0

L
L0

≈ 4 − 10

T1 T2 > T1 T1



Condi9ons for Rubber Elas9city

200

10

10

10

10

Temperature / °C

E 
/ P

a

elastomers rubbers

• rubber elasJcity is specific to organic polymers above Tg.

operaJng T slightly above Tg; 
corresponds to the rubbery state 

lightly cross-linked

• long, flexible chains (liule to no crystallisa9on) 
• rather weak intermolecular forces 
• crosslinks (chemical or physical)

phenomenology

the staJc picture represenJng entanglements 
as “knots” does not reflect the purely dynamic 
origin of this phenomenon!

rubbery state

M1 < M2 < M3

1

2

4

3



Rubbers vs. Elastomers
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rubbers elastomers

• in pracJce, we tend to confuse elastomers and rubbers…

“rubber gloves”

upon vulcanisaJon, natural 
rubber is converted into an 

elastomer

double bond: prone to cross-linking

natural rubber (“fluid”-like)



Network Crea9on for Elastomers
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• three-dimensional networks by chemical or physical crosslinking methods

radical mechanismvulcanisa9on

< 1%: elastomer 
ca. 10%: hard “rubber”

R1O O R1 R1O

R OH R

RR R R

crosslinking of PE by irradia9on 
and forma9on of free radicals 
(resistant to sterilisaJon in boiling 
water)

S2
S

SS2
S

S

R1O O R1 R1O

R OH R

RR R R

R1O O R1 R1O

R OH R

RR R R

R1O O R1 R1O

R OH R

RR R R

R1O O R1 R1O

R OH R

RR R R

physical crosslinks

PS: glassy, hard 
PUR: semicrystalline

soa matrix



Thermodynamic Considera9on of Rubber Elas9city



Incompressible Nature of Rubbers
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• polymers in their rubbery and melt state are considered as incompressible

10

10
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• invariant dependence of compression modulus, , but strong dependence of elasJc modulus, , on K E T

decrease of  by a factor of 1000 above TgE

K = 8Ecoh

V0

Δl

l0 ΔV
V0

= (1 − 2μ) Δl
l0

= (1 − 2μ)ϵ

μ = 1
2 (1 − E

3K
)

Poisson’s raJo for a uniaxially deformed polymer is 0.5.

phenomenology Poisson’s ra9o



Thermodynamic Considera9ons of Rubber Elas9city
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• 1st law of thermodynamics: change in internal 
energy of an isolated system, : 

• Helmholts free energy, , and its change, : 

•  is a thermodynamic state funcJon of 
variables , , and : 

• the complete differenJal is: 

• the parJal derivaJves of  are:

dU

A dA

dA
T V l

A

dU = dQ − dW = TdS − pdV + fdl

A = U − TS dA = dU − d(TS) = dU − TdS − SdT

dA = − SdT − pdV + fdl

dA = ( δA
δT

)V,l dT + ( δA
δV

)T,l dV + ( δA
δl

)T,V dl

( ∂A
∂T

)V,l = − S ( ∂A
∂V

)T,l = − p ( ∂A
∂l

)T,V = f



Energe9cs and Entropic Components of the Elas9c Force
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• from incompressability, it follows:  

• a second derivaJve of  does not depend on the 
order of differenJaJon: 

• we arrive at two contribuJons for the force : 

• combinaJon of the above equaJons:

A

f

∂2A
∂T∂l

= ∂2A
∂l∂T

−( ∂S
∂l

)T,V = ( ∂f
∂T

)V,l

energe9c 
term 

entropic 
term 

( ∂A
∂T

)V,l = − S ( ∂A
∂V

)T,l = − p ( ∂A
∂l

)T,V = f

f = ( ∂A
∂l

)T,V = [ ∂(U − TS)
∂l

]T,V = ( ∂U
∂l

)T,V − T( ∂S
∂l

)T,V

f = ( ∂U
∂l

)T,V + T( ∂f
∂T

)V,l = fE + fS



Energe9cs and Entropic Components of the Elas9c Force
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• rubber elas9city has primarily entropic origins; for ideal rubbers, !fE = 0

• a peculiar temperature-dependence: the retracJon force, , increases with increasing temperature!f

0
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Physical Interpreta9on
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• above Tg, we assume that energeJc barriers to changes in conformaJon are negligible 
• deformaJon leads then to a decrease in entropy

 below Tg above Tg

• below Tg, too high barriers to conformaJonal changes: deformaJon results in predominant changes 
of the internal energy (  or ).U Ecoh

stretched conforma9ons 
possible

frozen random coil 
conforma9on
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Sta9s9cal Mechanical Theory



Affine Network Model
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λ = 2

• deforma9on is affine (posiJons of crosslinks are changed precisely according to macroscopic deformaJon) 
• chains between crosslinks can be represented by Gaussian sta9s9cs of phantom chains 

• the network is ideal ( ) 

• chains are flexible ( ), no chain slip or strain-induced crystallisa9on (see Slide 172 and Chapter 3.3) 

• incompressability

fE = 0
T > Tg

undeformed network affine network

λ = 2
• fixed posiJons of juncJon points defined by the 

specimen deformaJon raJo 
• network strands deform in the same manner 

with the macroscopic deformaJon



Repe99on: The “Gaussian” Chain
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• most probable are conformaJons with , but it’s rms value is finite and proporJonal to Rn = 0 n

• an ideal chain can be mapped onto a random walk and obeys Gaussian staJsJcs
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(see Chapter 2.1)



The Entropy of an Ideal Polymer Chain
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• the entropy is the product of Boltzmann’s constant, 
, and the logarithm of the number of states,  

• the entropy of an ideal chain, , is related to the 
probability density funcJon 

• inserJon and rearrangement leads us to 

• only the last term depends on the end-to-end vector

k Ω

Sc

S = k lnΩ

Sc = k lnΩ = k ln(P dτ) = C + k lnP

Sc = C + k ln[( 3
2πnl2 )3/2exp(− 3R2

n

2nl2 )]

Sc = C + k(ln[( 3
2πnl2 )3/2] − 3R2

n

2nl2 )

Sc = S0 − 3kR2
n

2nl2



The Effect of Deforma9on
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• under the assump9on of no change of internal energy (i.e. for ideal rubber behavior):

before 
deforma9on

axer 
deforma9on

• the deformaJon, , displaces one juncJon point from ( ) to ( )λ x, y, z λ1x, λ2y, λ3z

λ1x

λ2y

λ3zz

x

y

Sc = S0 − 3kR2
n

2nl2 ΔSc = − 3k((λ2
1 − 1)x2 + (λ2

2 − 1)y2 + (λ2
3 − 1)z2)

2nl2

ΔAc = − TΔSc = 3kT((λ2
1 − 1)x2 + (λ2

2 − 1)y2 + (λ2
3 − 1)z2)

2nl2



Network Deforma9on
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• we consider N subchains per unit volume (equivalent to the number of crosslinks) 
with n subunits and an end-to-end distance according to ideal chain staJsJcs

before deforma9on

axer deforma9on

< R2
n > = < x2 > + < y2 > + < z2 > = na2 < x2 > = < y2 > = < z2 > = na2

3

< ΔAc > =
kT((λ2

1 − 1) + (λ2
2 − 1) + (λ2

3 − 1))
2

ΔA = N < ΔAc > = NkT(λ2
1 + λ2

2 + λ2
3 − 3)

2

stretching into a single 
direc9on ( )ν = 0.5 ΔA = N < ΔAc > = NkT(λ2 + 2λ−1 − 3)

2
λ1 = λ λ2 = λ3 = 1

λ
λ1λ2λ3 = 1

• the force per unit volume: f = (∂A
∂l )T = (∂A

∂λ )T = ∂
∂λ ( NkT(λ2 + 2λ−1 − 3)

2 )T = NkT(λ − λ−2) = σ



Uniaxial Deforma9on
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• rubber elas9city depends only on the number subchains, N, and the temperature, T 
• s9ffness increases with increasing temperature

• using                                                 , 

we find a relaJons between stress: 

σ = NKT(1 + ϵ − 1
(1 + ϵ)2 ) = NkT

(1 + ϵ)3 − 1
(1 + ϵ)2 = NkT

ϵ3 + 3ϵ2 + 3ϵ
(1 + ϵ)2

σ ≈ 3NkTϵϵ → 0 :

ϵ = Δl
l0

= λl0 − l0
l0

= λ − 1

E = σ
ϵ

= 3NkTYoung’s modulus, , is accordingly:E



Rela9onship Between Moduli and Moduli of Elas9city
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• for an elastomer (Poisson’s ra9o ≈ 0.5), the shear modulus is therefore:

• for isotropic polymers, simple relaJonships exist between the elasJc constants: 
(for small deformaJons, when Hooke’s law applies)

G = E
3 = NkT

Young’s modulus: 

Shear modulus: 

Bulk modulus: 

Poisson’s raJo:

E = 2G(1 + v) E = 3K(1 − 2v)

G = 1
2

E
1 + v

G = 3
2

K(1 − 2v)
1 + v

K = 1
3

E
1 − 2v

K = 2
3

G(1 + v)
1 − 2v

v = 1
2 − 1E

6K
v = E

2G
− 1



Limita9on of the Molecular Theory of Rubber Elas9city
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• failure of the model for high crosslinks 

• phantom network: independent conformaJons of 
subchains 

• strain hardening: induced crystallisaJon at large 
deformaJons 

• Gaussian approximaJon fails at large strains

comparison limita9ons

• our approach works well for small strains and low cross linking densiJes

0
0

σ
NkT

λ

theory 

experiment



Non-Gaussian Sta9s9cs
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• Langevin and Gaussian distribu9on are iden9cal for .Rn ≪ nl

• more realisJc distribuJon funcJons such as the Langevin distribu9on can be used

lnP(r) = constant − n[ 3
2 ( r

nl )
2

+ 9
20 ( r

nl )
4

+ 99
350 ( r

nl )
6

+ ⋅ ⋅ ⋅ ] f = kT
l [3( r

nl ) + 9
5 ( r

nl )
3

+ 297
175 ( r

nl )
5

+ 1539
875 ( r

nl )
7

+ ⋅ ⋅ ⋅ ]

first-term approximation



• emprirical strain-energy funcJon according to Mooney-Rivlin depends only on extension raJos 

• invariance: independence of the choice or coordinate system 

• only even powers of  to construct strain-energy funcJon 

• incompressibility, i.e. : 

λ

λ1λ2λ3 = 1

Empirical Approaches

219For further reading see:

λ1 + λ2 + λ3 λ2
1 + λ2

2 + λ2
3 λ1λ2λ3λ1λ2 + λ2λ3 + λ3λ1

I1 = λ2
1 + λ2

2 + λ2
3 I2 = λ2

1 λ2
2 + λ2

2 λ2
3 + λ2

3 λ2
1 I3 = λ2

1 λ2
2 λ2

3

I1 = λ2
1 + λ2

2 + λ2
3 I2 = λ−2

1 + λ−2
2 + λ−2

3 I3 = 1

strain-energy-funcJon = f(λ1, λ2, λ3)



Empirical Approaches (Mooney-Rivlin)
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• the change in A can be formulated as a power series with  for the non-deformed state 

• for uniaxial tension,  and : 

• the last equaJon resembles our previously derived one (Slide 272), but includes correcJon terms with 
arbitrary constants to be adjusted to a more real rubber behaviour.

λ1 = λ2 = λ3 = 1

λ1 = λ λ2 = λ3 = 1
λ

ΔA =
∞

∑
m,n=0

Cm,n(I1 − 3)m(I2 − 3)n = C1,0(I1 − 3) + C0,1(I2 − 3) + . . .

σ = dΔA
dλ

= d
dλ

(C1,0(λ2
1 + λ2

2 + λ2
3 − 3) + C0,1(λ−2

1 + λ−2
2 + λ−2

2 − 3) + . . . )

σ = C1,0(2λ − λ−2) + 2C0,1(1 − λ−3) + . . . Slide 290: 3NkT



Entanglement Network
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• entanglement contribute to the effec9ve cross-linking density in elastomers

entanglement entanglement network

10

10

10

Temperature (or Time!)

E 
/ P

a

semicrystalline

rubbery
M1 < M2 < M3

elastomeric
Ee = 3Neff kT

: entanglement densityNe

Neff
−1 = Ne

−1 + Nx
−1

The staJc picture represenJng 
entanglements as “knots” does not 
reflect the purely dynamic origin of this 
phenomenon!

: cross-linking densityNx



Elastomers in Prac9ce



Natural Rubber
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• product very resistanced to breakage (crystallisa9on induced by deforma9on) 
• low hysteresis during cyclic deforma9on 
• moderately resistant to UV, oxidants, fuels

Latex Hevea Brasiliensis Natural Rubber

• commercial exploitaJon of natural rubber from Hevea Brasiliensis (> 20% of global rubber producJon)

(almost enJrely cis-1,4-PI) 
Tg = -70 °C 
Mw = 106 g/mol

Dry Natural Rubber 

milky fluid  from extremely small 
parJcles of rubber, used for products 
made by dipping, extruding, or 
coaJng processes.

dried or milled sheets are processed 
by compression molding, extrusion.



Synthe9c Elastomers and Rubbers
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• many more that fulfil rubber criteria (low Tg, no or low Tm, well entangled)

polybutadiene (PB) neoprene polyisobutylene (PIB)

• technologically relevant homopolymers with low Tg (ca. 60% of global rubber producJon)

synthe9c PI

n

Cl

n n

resistance to abrasion 
(impact modificaJon, 
copolymers, mixtures, Jres)

resistance to the 
environment 
(pipes, cables, protecJon)

low permeability, resistance 
to oxidaJons 
(inner tubes, seals, bags)

Tg = -90 °C Tg = -50 °C Tg = -65 °C

n

Tg = -70 °C

resistance to tear and abrasion, 
elasJcity 
(Jres, see Slide 302)



Silicones
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• wide-ranging applica9ons depending on structure and proper9es

PDMS 
(polydimethylsiloxane)

MPDMS 
modified poly(diemethylsiloxane)

• heteroatom backbone from strong Si-O bonds

Si O n
Si O n

R1R2

tendence to crystallize

operaJng temperature from -130 to 250 °C; 
resistant to the environment, chemically inert, 
but poor mechanical properJes 
(moulds, electronics industry, medicine, etc..)



Synthe9c Elastomers From Copolymers
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• many other formula9ons, in par9cular block copolymers, including TPEs (PS- or PU-based)…

poly(styrene-co-butadiene) ethylene-propylene (EPR) fluoroelastomers

• technologically relevant (random) copolymers with low glass transiJon temperatures

n
x

y F
n

x
yF

Cl F

FF
n

x
y

Tg = -60 °C Tg = -60 °C Tg = -65 °C

PS domains act as physical crosslinks; 
beqer abrasion resistance than natural rubber, 
cheap 
(Jres, shoes, cables)

environmentally resistant 
(cables, impact modificaJon)

excepJonal resistance to the environment 
and T-resistant, but expensive 
(engineering applicaJons)

(> 10% of global rubber producJon)



Applica9ons of Elastomers in Tires
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• mostly 9res: opJmised adhesion, resistance to indentaJon & abrasion, verJcal damping (comfort), etc…

world production: 40 x 106 tonnes (2 x 1010 per year)

internal coa9ng 
(PIB)

cis 1-4 PB 35%
carbon black 65%

fuel oil 9%
others

natural rubber
SB

cis 1-4 PB
carbon black



Other Types of Applica9ons
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•industrial applicaJons (seals, belts, insulaJon, cables…) 

•agriculture (animal tags, convey belts, …) 

•medical applicaJons (gloves, implants, prostheJcs, …) 

•prinJng applicaJons 

•consumer proudcts, footwear,  sporJng goods,  food storage, housing, adhesives



Summary
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• elastomers are materials capable of undergoing very large reversible deforma9ons: this 
phenomenon is at present limited to highly cross-linked flexible polymers above Tg. 

• thermodynamic analysis indicates the dominant contribu9on to the stress-strain behaviour to be 
entropic in origin. The forces opposing deforma9on arise from the reduced number of 
conforma9onal states available to a stretched chain (equivalent to a decrease in entropy and 
hence an increase in free energy). 

• half of the world’s rubber produc9on currently ends up as 9res (mainly NR, SBR, and PB). Since 
most common elastomers are miscible, there is enormous scope for adap9ng proper9es by 
blending. Many more types of rubbers are available for specific applica9ons.


